
© 2017 Parasoft Corporation

1

Achieving MISRA C:2012 Compliance
with Parasoft C/C++test

MISRA C:2012

The first step in developing safe and secure code is to establish a standard for constructing

defect-free code. The MISRA standard is widely used in safety-critical industries, such as

automotive, medical, military, and aerospace, and provides a set of best practices for writing C

code, facilitating the authorship of safe, secure, and portable code. MISRA supports the C90 and

C99 language specifications. The current version of MISRA, MISRA C:2012, has evolved over

several years and includes 143 rules and 16 directives for a total of 159 guidelines. Amendment 1

to MISRA C:2012, published in 2016, expanded the standard by 14 rules.

OVERVIEW OF PARASOFT SUPPORT FOR MISRA C:2012

Parasoft C/C++test and Parasoft DTP provides a comprehensive solution for applying MISRA

C:2012, including Amendment 1, to help organizations overcome the challenges associated with

ensuring automotive software quality. Parasoft C/C++test is a TUV-certified, scalable solution that

automates the application and monitoring of coding standards, such as MISRA. It also provides

a unit testing platform that integrates test creation, execution, and coverage reporting. Test

and analysis data from C/C++test can be sent to DTP, which aggregates, correlates, and applies

additional analytics to centralize reporting for each step along the complex software supply chain.

Parasoft’s MISRA Compliance Pack provides a set of reporting and configuration artifacts for DTP

that automate the compliance documentation required by MISRA—greatly reducing the time and

effort associated with demonstrating compliance and traceability. See examples from the MISRA

Compliance Pack on the following page.

EXECUTIVE SUMMARY

Software coding standards for automotive applications, such as

MISRA, have been around for years, but with the emergence of

complex technologies, such as autonomous driving and sophisticated

connectivity, the need to automate the implementation of rigorous

coding standards has never been greater. These innovations

represent not only the next evolution of a rapidly shifting and highly-

competitive market, they also present a much larger surface area for

defects that impact the safety, security, and reliability of the software.

Further complicating the issue is the industry’s highly distributed,

multi-tiered production model. The automotive software supply chain

involves many vendors and suppliers simultaneously contributing to

the software that goes into the final product. Implementing quality

control mechanisms in such a complex system is difficult, but failing

to do so introduces additional risk into the process. It is imperative

that businesses take action now to implement defect prevention

strategies that reduce the risk associated with software development.

Compliance Rule Mapping

© 2017 Parasoft Corporation

2

COMPLIANCE PACK: THE MISRA COMPLIANCE DASHBOARD

An important metric of a project is its current state of compliance, including the various finer points in measuring compliance. A comprehensive

MISRA compliance dashboard provides an on-the-spot evaluation of the project. This high-level view provides managers with an easily-

accessible understanding of compliance at a glance, and gives developers a starting point for making progress towards achieving compliance.

COMPLIANCE PACK: THE GUIDELINES COMPLIANCE SUMMARY

The Guidelines Compliance Summary is the primary record of overall project compliance. This report documents the state of compliance for

each guideline, as well as any associated deviations or re-categorizations.

Detailed rule mappings are specified on the following pages.

© 2017 Parasoft Corporation

3

MISRA C:2012 Summary

Decidable Undecidable

Supported/Total (Coverage) Supported/Total (Coverage)

All 116/116 (100%) 43/43 (100%)

Mandatory 5/5 (100%) 11/11 (100%)

Required 84 /84 (100%) 23/26 (88.5%)

Advisory 23/23 (100%) 11/11 (100%)

MISRA C:2012 Amendment 1 Summary

Decidable Undecidable

Supported/Total (Coverage) Supported/Total (Coverage)

All 4/4 (100%) 10/10 (100%)

Mandatory 1/1 (100%) 5/5 (100%)

Required 3 /3 (100%) 5/5 (100%)

Advisory n/a n/a

Parasoft MISRA C:2012 Rule Mapping

The following table provides a line-by-line correlation of Parasoft support for MISRA.

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Dir-1.1: Any implementation-
defined behavior on which the
output of the program depends
shall be documented and
understood

Required Undecidable Cannot be statically verified

Dir-2.1: All source files
shall compile without any
compilation errors

Required Undecidable Non-compliance code will generate a parse error

Dir-3.1: All code shall be
traceable to documented
requirements

Required Undecidable Parasoft DTP provides traceability between tests and
requirements and tests and code

© 2017 Parasoft Corporation

4

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Dir-4.1: Run-time failures shall
be minimized

Required Undecidable MISRA2012-DIR-4_1_a : Avoid accessing arrays out of
bounds
MISRA2012-DIR-4_1_b : Avoid null pointer dereferencing
MISRA2012-DIR-4_1_c : Avoid division by zero
MISRA2012-DIR-4_1_d : Avoid buffer overflow due to
defining incorrect format limits
MISRA2012-DIR-4_1_e : Avoid overflow due to reading a
not zero terminated string
MISRA2012-DIR-4_1_f : Do not check for null after
dereferencing
MISRA2012-DIR-4_1_g : Avoid overflow when reading
from a buffer
MISRA2012-DIR-4_1_h : Avoid overflow when writing to
a buffer
MISRA2012-DIR-4_1_i: Pointer arithmetic shall only be
applied to pointers that address an array or array element

MISRA2012-DIR-4_1_j: >, >=, <, <= shall not be applied
to objects of pointer type, except where they point to the
same array

Dir-4.2: All usage of
assembly language should be
documented

Advisory Undecidable MISRA2012-DIR-4_2: All usage of assembly language
should be documented

Dir-4.3: Assembly language
shall be encapsulated and
isolated

Required Undecidable MISRA2012-DIR-4_3: Assembly language shall be
encapsulated and isolated

Dir-4.4: Sections of code
should not be commented out

Advisory Undecidable MISRA2012-DIR-4_4: Sections of code should not be
“commented out”

Dir-4.5: Identifiers in the
same namespace with
overlapping visibility should be
typographically unambiguous

Advisory Undecidable MISRA2012-DIR-4_5: Identifiers in the same name space
with overlapping visibility should be typographically
unambiguous

Dir-4.6: Typedefs that indicate
size and signedness should
be used in place of the basic
numerical types

Advisory Undecidable MISRA2012-DIR-4_6_a: typedefs to basic types should
contain some digits in their name
MISRA2012-DIR-4_6_b: typedefs should be used in place
of the basic types
MISRA2012-DIR-4_6_c: Use typedefs from stdint.h
instead of declaring your own in C99 code

© 2017 Parasoft Corporation

5

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Dir-4.7: If a function returns
error information, then that
error information shall be
tested

Required Undecidable MISRA2012-DIR-4_7_a : Consistently check the returned
value of non-void functions
MISRA2012-DIR-4_7_b : Always check the returned value
of non-void function

Dir-4.8: If a pointer to a
structure or union is never
dereferenced within a
translation unit, then the
implementation of the object
should be hidden

Advisory Undecidable MISRA2012-DIR-4_8: If a pointer to a structure or union
is never dereferenced within a translation unit, then the
implementation of the object should be hidden

Dir-4.9: A function should
be used in preference to a
function-like macro where they
are interchangeable

Advisory Undecidable MISRA2012-DIR-4_9: A function should be used in
preference to a function-like macro where they are
interchangeable

Dir-4.10: Precautions shall be
taken in order to prevent the
contents of a header file being
included more than once

Required Undecidable MISRA2012-DIR-4_10: Precautions shall be taken in order
to prevent the contents of a header file being included
more than once

Dir-4.11: The validity of values
passed to library functions shall
be checked

Required Undecidable MISRA2012-DIR-4_11 : Validate values passed to library
functions

Dir-4.12: Dynamic memory
allocation shall not be used

Required Undecidable MISRA2012-DIR-4_12: Dynamic memory allocation shall
not be used

Dir-4.13: Functions which are
designed to provide operations
on a resource should be called
in an appropriate sequence

Advisory Undecidable MISRA2012-DIR-4_13_a : All resources obtained
dynamically by means of Standard Library functions shall
be explicitly released
MISRA2012-DIR-4_13_b : Do not use resources that have
been freed
MISRA2012-DIR-4_13_c : Do not free resources using
invalid pointers
MISRA2012-DIR-4_13_d : Do not abandon unreleased
locks
MISRA2012-DIR-4_13_e : Avoid double locking

© 2017 Parasoft Corporation

6

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-1.1: The program shall
contain no violations of
the standard C syntax and
constraints, and shall not
exceed the implementation’s
translation limits

Required Decidable MISRA2012-RULE-1_1_a_c90: A program should not
exceed the translation limits imposed by The Standard
(c90)
MISRA2012-RULE-1_1_a_c99: A program should not
exceed the translation limits imposed by The Standard
(c99)
MISRA2012-RULE-1_1_b_c90: A program should not
exceed the translation limits imposed by The Standard
(c90)
MISRA2012-RULE-1_1_b_c99: A program should not
exceed the translation limits imposed by The Standard
(c99)

Rule-1.2: Language extensions
should not be used

Advisory Undecidable Cannot be statically verified

Rule-1.3: There shall be no
occurrence of undefined or
critical unspecified behavior

Required Undecidable MISRA2012-RULE-1_3_a : Avoid division by zero
MISRA2012-RULE-1_3_b : Avoid use before initialization
MISRA2012-RULE-1_3_c : Do not use resources that have
been freed
MISRA2012-RULE-1_3_d : Avoid overflow when reading
from a buffer
MISRA2012-RULE-1_3_e : Avoid overflow when writing to
a buffer
MISRA2012-RULE-1_3_f: The value of an expression
shall be the same under any order of evaluation that the
standard permits
MISRA2012-RULE-1_3_g: Don’t write code that depends
on the order of evaluation of function arguments
MISRA2012-RULE-1_3_h: Don’t write code that depends
on the order of evaluation of function designator and
function arguments
MISRA2012-RULE-1_3_i: Don’t write code that depends
on the order of evaluation of expression that involves a
function call
MISRA2012-RULE-1_3_j: Between sequence points an
object shall have its stored value modified at most once by
the evaluation of an expression
MISRA2012-RULE-1_3_k: Do not use more than one
volatile in one expression
MISRA2012-RULE-1_3_l: Don’t write code that depends
on the order of evaluation of function calls
MISRA2012-RULE-1_3_m: A function shall not return a
pointer or reference to a non-static local object
MISRA2012-RULE-1_3_n: The address of an object with
automatic storage shall not be assigned to an object which
persists after the object has ceased to exist
MISRA2012-RULE-1_3_o: The left-hand operand of a
right-shift operator shall not have a negative value

© 2017 Parasoft Corporation

7

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-2.1: A project shall not
contain unreachable code

Required Undecidable MISRA2012-RULE-2_1_a: There shall be no unreachable
code in ‘else’ block
MISRA2012-RULE-2_1_b: There shall be no unreachable
code after ‘return’, ‘break’, ‘continue’, and ‘goto’ statements
MISRA2012-RULE-2_1_c: There shall be no unreachable
code in ‘if’, ‘else’, ‘while’, ‘for’ block
MISRA2012-RULE-2_1_d: There shall be no unreachable
code in ‘switch’ statement
MISRA2012-RULE-2_1_e: There shall be no unreachable
code in ‘for’ loop
MISRA2012-RULE-2_1_f: There shall be no unreachable
code after ‘if’ or ‘switch’ statement
MISRA2012-RULE-2_1_g: There shall be no unreachable
code after ‘if’ or ‘switch’ statement inside ‘while’/’for’/’do...
while’ loop

Rule-2.2: There shall be no
dead code

Required Undecidable MISRA2012-RULE-2_2_a: All non-null statements shall
either have at least one side-effect however executed or
cause control flow to change

Rule-2.3: A project should
not contain unused type
declarations

Advisory Decidable MISRA2012-RULE-2_3_a: A function should not contain
unused type declarations
MISRA2012-RULE-2_3_b: A source file should not contain
unused type declarations

Rule-2.4: A project should
not contain unused tag
declarations

Advisory Decidable MISRA2012-RULE-2_4_a: A function should not contain
unused local tag declarations
MISRA2012-RULE-2_4_b: A source file should not contain
unused tag declarations

Rule-2.5: A project should
not contain unused macro
declarations

Advisory Decidable MISRA2012-RULE-2_5: A source file should not contain
unused macro declarations

Rule-2.6: A function should
not contain unused label
declarations

Advisory Decidable MISRA2012-RULE-2_6: A function should not contain
unused label declarations

Rule-2.7: There should be
no un-used parameters in
functions

Advisory Decidable MISRA2012-RULE-2_7: There should be no unused
parameters in functions

Rule-3.1: The character
sequences /* and // shall not be
used within a comment

Required Decidable MISRA2012-RULE-3_1_a: The character sequence /* shall
not be used within a C-style comment
MISRA2012-RULE-3_1_b: The character sequence // shall
not be used within a C-style comment
MISRA2012-RULE-3_1_c: The character sequence /* shall
not be used within a C++-style comment

© 2017 Parasoft Corporation

8

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-3.2: Line-splicing shall not
be used in // comments

Required Decidable MISRA2012-RULE-3_2: Line-splicing shall not be used in
// comments

Rule-4.1: Octal and
hexadecimal escape
sequences shall be terminated

Required Decidable MISRA2012-RULE-4_1: Octal and hexadecimal escape
sequences shall be terminated

Rule-4.2: Trigraphs should not
be used

Advisory Decidable MISRA2012-RULE-4_2: Trigraphs should not be used

Rule-5.1: External identifiers
shall be distinct

Required Decidable MISRA2012-RULE-5_1: External identifiers shall be distinct

Rule-5.2: Identifiers declared
in the same scope and name
space shall be distinct

Required Decidable MISRA2012-RULE-5_2_a_c90: Identifiers declared in the
file scope and in the same name space shall be distinct
(c90)
MISRA2012-RULE-5_2_a_c99: Identifiers declared in the
file scope and in the same name space shall be distinct
(c99)
MISRA2012-RULE-5_2_b_c90: Identifiers declared in the
same block scope and name space shall be distinct (c90)
MISRA2012-RULE-5_2_b_c99: Identifiers declared in the
same block scope and name space shall be distinct (c99)

Rule-5.3: An identifier declared
in an inner scope shall not hide
an identifier declared in an
outer scope

Required Decidable MISRA2012-RULE-5_3_a: An identifier declared in an
inner scope shall not hide an identifier declared in an
outer scope
MISRA2012-RULE-5_3_b: An identifier declared in an
inner scope shall not hide an identifier declared in an
outer scope

Rule-5.4: Macro identifiers shall
be distinct

Required Decidable MISRA2012-RULE-5_4_a_c90: The name of a macro
should be distinct from the names of its parameters (c90)
MISRA2012-RULE-5_4_a_c99: The name of a macro
should be distinct from the names of its parameters (c99)
MISRA2012-RULE-5_4_b_c90: The name of a macro
should be distinct from the names of other macros that are
currently defined (c90)
MISRA2012-RULE-5_4_b_c99: The name of a macro
should be distinct from the names of other macros that are
currently defined (c99)

Rule-5.5: Identifiers shall be
distinct from macro names

Required Decidable MISRA2012-RULE-5_5_c90: Identifiers shall be distinct
from macro names (c90)
MISRA2012-RULE-5_5_c99: Identifiers shall be distinct
from macro names (c99)

© 2017 Parasoft Corporation

9

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-5.6: A typedef name shall
be a unique identifier

Required Decidable MISRA2012-RULE-5_6_a: A typedef name shall be a
unique identifier
MISRA2012-RULE-5_6_b: A typedef name shall be a
unique identifier

Rule-5.7: A tag name shall be a
unique identifier

Required Decidable MISRA2012-RULE-5_7_a: A tag name shall not be reused
for other purpose within the program
MISRA2012-RULE-5_7_b: A tag name shall not be reused
to define a different tag

Rule-5.8: Identifiers that define
ob- jects or functions with
external linkage shall be unique

Required Decidable MISRA2012-RULE-5_8: Identifiers that define objects or
functions with external linkage shall be unique

Rule-5.9: Identifiers that
define objects or functions
with internal linkage should be
unique

Advisory Decidable MISRA2012-RULE-5_9_a: Identifiers that define objects or
functions with internal linkage should be unique
MISRA2012-RULE-5_9_b: Identifiers that define objects or
functions with internal linkage should be unique

Rule-6.1: Bit-fields shall only be
declared with an appropriate
type

Required Decidable MISRA2012-RULE-6_1: Bit-fields shall only be declared
with an appropriate type

Rule-6.2: Single-bit named bit
fields shall not be of a signed
type

Required Decidable MISRA2012-RULE-6_2: Single-bit named bit fields shall
not be of a signed type

Rule-7.1: Octal constants shall
not be used

Required Decidable MISRA2012-RULE-7_1: Octal constants shall not be used

Rule-7.2: A “u” or “U” suffix
shall be applied to all integer
constants that are represented
in an unsigned type

Required Decidable MISRA2012-RULE-7_2: A ‘u’ or ‘U’ suffix shall be applied
to all integer constants that are represented in an
unsigned type

Rule-7.3: The lowercase
character “l” shall not be used
in a literal suffix

Required Decidable MISRA2012-RULE-7_3: The lowercase character ‘l’ shall
not be used in a literal suffix

Rule-7.4: A string literal shall
not be assigned to an object
unless the object’s type is
“pointer to const-qualified char”

Required Decidable MISRA2012-RULE-7_4: A string literal shall not be
assigned to an object unless the object’s type is pointer to
const-qualified char

© 2017 Parasoft Corporation

10

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-8.1: Types shall be
explicitly specified

Required Decidable MISRA2012-RULE-8_1_a: Whenever a function is declared
or defined, its type shall be explicitly stated
MISRA2012-RULE-8_1_b: Whenever an object is declared
or defined, its type shall be explicitly stated

Rule-8.2: Function types shall
be in prototype form with
named parameters

Required Decidable MISRA2012-RULE-8_2_a: Identifiers shall be given for all
of the parameters in a function prototype declaration
MISRA2012-RULE-8_2_b: Function types shall have
named parameters
MISRA2012-RULE-8_2_c: Function types shall be in
prototype form

Rule-8.3: All declarations of an
object or function shall use the
same names and type qualifiers

Required Decidable MISRA2012-RULE-8_3_a: If objects or functions are
declared more than once their types shall be compatible
MISRA2012-RULE-8_3_b: The identifiers used in the
declaration and definition of a function shall be identical

Rule-8.4: A compatible
declaration shall be visible
when an object or function with
external linkage is defined

Required Decidable MISRA2012-RULE-8_4_a: A compatible declaration shall
be visible when an object or function with external linkage
is defined
MISRA2012-RULE-8_4_b: A compatible declaration shall
be visible when an object or function with external linkage
is defined

Rule-8.5: An external object or
function shall be declared once
in one and only one file

Required Decidable MISRA2012-RULE-8_5: An external object or function
shall not have more than one non-defining declaration in
translation unit

Rule-8.6: An identifier with
external linkage shall have
exactly one external definition

Required Decidable MISRA2012-RULE-8_6: An identifier with external linkage
shall have exactly one external definition

Rule-8.7: Functions and
objects should not be defined
with external linkage if they
are referenced in only one
translation unit

Advisory Decidable MISRA2012-RULE-8_7: Functions and objects should not
be defined with external linkage if they are referenced in
only one translation unit

Rule-8.8: The static storage
class specifier shall be used in
all declarations of objects and
functions that have internal
linkage

Required Decidable MISRA2012-RULE-8_8: The static storage class specifier
shall be used in all declarations of objects and functions
that have internal linkage

Rule-8.9: An object should
be defined at block scope if
its identifier only appears in a
single function

Advisory Decidable MISRA2012-RULE-8_9: An object should be defined
at block scope if its identifier only appears in a single
function

© 2017 Parasoft Corporation

11

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-8.10: An inline function
shall be declared with the static
storage class

Required Decidable MISRA2012-RULE-8_10: An inline function shall be
declared with the static storage class

Rule-8.11: When an array with
external linkage is declared,
its size should be explicitly
specified

Advisory Decidable MISRA2012-RULE-8_11: When an array with external
linkage is declared, its size should be explicitly specified

Rule-8.12: Within an
enumerator list, the value of an
implicitly-specified enumeration
constant shall be unique

Required Decidable MISRA2012-RULE-8_12: Within an enumerator list, the
value of an implicitly-specified enumeration constant shall
be unique

Rule-8.13: A pointer should
point to a const qualified type
whenever possible

Advisory Undecidable MISRA2012-RULE-8_13_a: A pointer parameter in a
function prototype should be declared as pointer to const
if the pointer is not used to modify the addressed object
MISRA2012-RULE-8_13_b: Declare a type of parameter
as typedef to pointer to const if the pointer is not used to
modify the addressed object

Rule-8.14: The restrict type
qualifier shall not be used

Required Decidable MISRA2012-RULE-8_14: The restrict type qualifier shall
not be used

Rule-9.1: The value of an
object with automatic storage
duration shall not be read
before it has been set

Mandatory Undecidable MISRA2012-RULE-9_1 : Avoid use before initialization

Rule-9.2: The initializer for an
aggregate or union shall be
enclosed in braces

Required Decidable MISRA2012-RULE-9_2: The initializer for an aggregate or
union shall be enclosed in braces

Rule-9.3: Arrays shall not be
partially initialized

Required Decidable MISRA2012-RULE-9_3: Arrays shall not be partially
initialized

Rule-9.4: An element of an
object shall not be initialized
more than once

Required Decidable MISRA2012-RULE-9_4: An element of an object shall not
be initialized more than once

Rule-9.5: Where designated
initializers are used to initialize
an array object the size of
the array shall be specified
explicitly

Required Decidable MISRA2012-RULE-9_5: Where designated initializers are
used to initialize an array object the size of the array shall
be specified explicitly

© 2017 Parasoft Corporation

12

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-10.1: Operands shall not
be of an inappropriate essential
type

Required Decidable MISRA2012-RULE-10_1_a: An expression of essentially
Boolean type should always be used where an operand is
interpreted as a Boolean value
MISRA2012-RULE-10_1_b: An operand of essentially
Boolean type should not be used where an operand is
interpreted as a numeric value
MISRA2012-RULE-10_1_c: An operand of essentially
character type should not be used where an operand is
interpreted as a numeric value
MISRA2012-RULE-10_1_d: An operand of essentially
enum type should not be used in an arithmetic operation
MISRA2012-RULE-10_1_e: Shift and bitwise operations
should not be performed on operands of essentially
signed or enum type
MISRA2012-RULE-10_1_f: An operand of essentially
signed or enum type should not be used as right hand
side operand to the bitwise shifting operator
MISRA2012-RULE-10_1_g: An operand of essentially
unsigned type should not be used as the operand to the
unary minus operator

Rule-10.2: Expressions of
essentially character type shall
not be used inappropriately
in addition and subtraction
operations

Required Decidable MISRA2012-RULE-10_2: Expressions of essentially
character type shall not be used inappropriately in addition
and subtraction operations

Rule-10.3: The value of
an expression shall not be
assigned to an object with
a narrower essential type or
of a different essential type
category

Required Decidable MISRA2012-RULE-10_3_a: The value of an expression
shall not be assigned to an object with a narrower
essential type
MISRA2012-RULE-10_3_b: The value of an expression
shall not be assigned to an object of a different essential
type category

Rule-10.4: Both operands of
an operator in which the usual
arithmetic conversions are
performed shall have the same
essential type category

Required Decidable MISRA2012-RULE-10_4_a: Both operands of an operator
in which the usual arithmetic conversions are performed
shall have the same essential type category
MISRA2012-RULE-10_4_b: The second and third
operands of the ternary operator shall have the same
essential type category

Rule-10.5: The value of an
expression should not be cast
to an inappropriate essential
type

Advisory Decidable MISRA2012-RULE-10_5_a: The cast operation to
essentially enumeration type is not allowed
MISRA2012-RULE-10_5_b: Do not cast from or to
essentially Boolean type
MISRA2012-RULE-10_5_c: Do not use casts between
essentially character types and essentially floating types

© 2017 Parasoft Corporation

13

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-10.6: The value of a
composite expression shall not
be assigned to an object with
wider essential type

Required Decidable MISRA2012-RULE-10_6: The value of a composite
expression shall not be assigned to an object with wider
essential type

Rule-10.7: If a composite
expression is used as one
operand of an operator in
which the usual arithmetic
conversions are performed
then the other operand shall
not have wider essential type

Required Decidable MISRA2012-RULE-10_7_a: If a composite expression is
used as one operand of an operator in which the usual
arithmetic conversions are performed then the other
operand shall not have wider essential type
MISRA2012-RULE-10_7_b: If a composite expression is
used as one (second or third) operand of a conditional
operator then the other operand shall not have wider
essential type

Rule-10.8: The value of a
composite expression shall not
be cast to a different essential
type category or a wider
essential type

Required Decidable MISRA2012-RULE-10_8: The value of a composite
expression shall not be cast to a different essential type
category or a wider essential type

Rule-11.1: Conversions shall
not be performed between a
pointer to a function and any
other type

Required Decidable MISRA2012-RULE-11_1_a: Conversions shall not be
performed between a pointer to a function and any other
type
MISRA2012-RULE-11_1_b: Conversions shall not be
performed between a pointer to a function and any other
type

Rule-11.2: Conversions shall
not be performed between a
pointer to an incomplete type
and any other type

Required Decidable MISRA2012-RULE-11_2: Conversions shall not be
performed between a pointer to an incomplete type and
any other type

Rule-11.3: A cast shall not be
per- formed between a pointer
to object type and a pointer to
a different object type

Required Decidable MISRA2012-RULE-11_3: A cast shall not be performed
between a pointer to object type and a pointer to a
different object type

Rule-11.4: A conversion should
not be performed between a
pointer to object and an integer
type

Advisory Decidable MISRA2012-RULE-11_4: A conversion should not be
performed between a pointer to object and an integer
type

Rule-11.5: A conversion should
not be performed from pointer
to void into pointer to object

Advisory Decidable MISRA2012-RULE-11_5: A conversion should not be
performed from pointer to void into pointer to object

Rule-11.6: A cast shall not be
per- formed between pointer to
void and an arithmetic type

Required Decidable MISRA2012-RULE-11_6: A cast shall not be performed
between pointer to void and an arithmetic type

© 2017 Parasoft Corporation

14

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-11.7: A cast shall not be
performed between pointer
to object and a non-integer
arithmetic type

Required Decidable MISRA2012-RULE-11_7: A cast shall not be performed
between pointer to object and a non-integer arithmetic
type

Rule-11.8: A cast shall not
remove any const or volatile
qualification from the type
pointed to by a pointer

Required Decidable MISRA2012-RULE-11_8: A cast shall not remove any
const or volatile qualification from the type pointed to by a
pointer

Rule-11.9: The macro NULL
shall be the only permitted form
of integer null pointer constant

Required Decidable MISRA2012-RULE-11_9_a: The macro NULL shall be the
only permitted form of integer null pointer constant
MISRA2012-RULE-11_9_b: The macro NULL shall be the
only permitted form of integer null pointer constant

Rule-12.1: The precedence of
operators within expressions
should be made explicit

Advisory Decidable MISRA2012-RULE-12_1_a: Use parentheses unless all
operators in the expression are the same
MISRA2012-RULE-12_1_b: The operands of a logical &&
or || shall be primary-expressions
MISRA2012-RULE-12_1_c: Parenthesis shall be used with
the ‘return’ and ‘sizeof’ statements

Rule-12.2: The right hand
operand of a shift operator
shall lie in the range

Required Undecidable MISRA2012-RULE-12_2: The right hand operand of a shift
operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand

Rule-12.3: The of the essential
type of the left hand should not
be used operand

Advisory Decidable MISRA2012-RULE-12_3: The comma operator should not
be used

Rule-12.4: Evaluation of
constant expressions should
not lead to unsigned integer
wrap-around

Advisory Decidable MISRA2012-RULE-12_4_a: Integer overflow or underflow
in constant expression in ‘+’, ‘-’, ‘*’ operator
MISRA2012-RULE-12_4_b: Integer overflow or underflow
in constant expression in ‘<<’ operator

Rule-13.1: Initializer lists shall
not contain persistent side
effects

Required Undecidable MISRA2012-RULE-13_1_a: Initializer lists shall not contain
persistent side effects

© 2017 Parasoft Corporation

15

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-13.2: The value of an
expression and its persistent
side effects shall be the same
under all permitted evaluation
orders

Required Undecidable MISRA2012-RULE-13_2_a: The value of an expression
shall be the same under any order of evaluation that the
standard permits
MISRA2012-RULE-13_2_b: Don’t write code that depends
on the order of evaluation of function arguments
MISRA2012-RULE-13_2_c: Don’t write code that depends
on the order of evaluation of function designator and
function arguments
MISRA2012-RULE-13_2_d: Don’t write code that depends
on the order of evaluation of expression that involves a
function call
MISRA2012-RULE-13_2_e: Between sequence points an
object shall have its stored value modified at most once by
the evaluation of an expression
MISRA2012-RULE-13_2_f: Do not use more than one
volatile in one expression
MISRA2012-RULE-13_2_g: Don’t write code that depends
on the order of evaluation of function calls

Rule-13.3: A full expression
containing an increment (++) or
decrement (–) operator should
have no other potential side
effects other than that caused
by the increment or decrement
operator

Advisory Decidable MISRA2012-RULE-13_3: A full expression containing an
increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the
increment or decrement operator

Rule-13.4: The result of an
assignment operator should not
be used

Advisory Decidable MISRA2012-RULE-13_4: The result of an assignment
operator should not be used

Rule-13.5: The right hand
operand of a logical && or
|| operator shall not contain
persistent side effects

Required Undecidable MISRA2012-RULE-13_5: The right hand operand of a
logical && or || operator shall not contain persistent side
effects

Rule-13.6: The operand of
the sizeof operator shall not
contain any expression which
has potential side effects

Mandatory Decidable MISRA2012-RULE-13_6_a: The operand of the sizeof
operator shall not contain any expression which has
potential side effects
MISRA2012-RULE-13_6_b: The operand of the sizeof
operator shall not contain any expression which has
potential side effects
MISRA2012-RULE-13_6_c: The operand of the sizeof
operator shall not contain any expression which has
potential side effects

© 2017 Parasoft Corporation

16

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-14.1: A loop counter shall
not have essentially floating
type

Required Undecidable MISRA2012-RULE-14_1_a: A loop counter in a ‘for’ loop
shall not have essentially floating type
MISRA2012-RULE-14_1_b: A loop counter in ‘while’ and
‘do-while’ loops shall not have essentially floating type

Rule-14.2: A for loop shall be
well formed

Required Undecidable MISRA2012-RULE-14_2_a: There shall only be one loop
counter in a ‘for’ loop, which shall not be modified in the
‘for’ loop body
MISRA2012-RULE-14_2_b: The first clause of a ‘for’ loop
shall be well-formed
MISRA2012-RULE-14_2_c: The second clause of a ‘for’
loop shall be well-formed
MISRA2012-RULE-14_2_d: The third clause of a ‘for’
statement shall be well-formed

© 2017 Parasoft Corporation

17

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-14.3: Controlling
expressions shall not be
invariant

Required Undecidable MISRA2012-RULE-14_3_a: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_b: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_c: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_d: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_e: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_f: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_g: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_h: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_i: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_j: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_k: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_l: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_m: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_n: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_o: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_p: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_q: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_r: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_s: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_t: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_u: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_v: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_w: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_x: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_y: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_z: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_za: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_zb: Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_zc : Controlling expressions
shall not be invariant

MISRA2012-RULE-14_3_zd : Avoid switch with
unreachable branches

© 2017 Parasoft Corporation

18

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-14.4: The controlling
expression of an if statement
and the controlling expression
of an iteration-statement shall
have essentially Boolean type

Required Decidable MISRA2012-RULE-14_4: The controlling expression of an
if statement and the controlling expression of an iteration-
statement shall have essentially Boolean type

Rule-15.1: The goto statement
should not be used

Advisory Decidable MISRA2012-RULE-15_1: The goto statement should not
be used

Rule-15.2: The goto statement
shall jump to a label declared
later in the same function

Required Decidable MISRA2012-RULE-15_2: The goto statement shall jump to
a label declared later in the same function

Rule-15.3: Any label referenced
by a goto statement shall be
declared in the same block, or
in any block enclosing the goto
statement

Required Decidable MISRA2012-RULE-15_3: Any label referenced by a goto
statement shall be declared in the same block, or in any
block enclosing the goto statement

Rule-15.4: There should be no
more than one break or goto
statement used to terminate
any iteration statement

Advisory Decidable MISRA2012-RULE-15_4: There should be no more than
one break or goto statement used to terminate any
iteration statement

Rule-15.5: A function should
have a single point of exit at
the end

Advisory Decidable MISRA2012-RULE-15_5: A function should have a single
point of exit at the end

Rule-15.6: The body of an
iteration- statement or a
selection-statement shall be a
compound statement

Required Decidable MISRA2012-RULE-15_6_a: The body of an iteration-
statement or a selection-statement shall be a compound-
statement
MISRA2012-RULE-15_6_b: The body of an iteration-
statement or a selection-statement shall be a compound-
statement

Rule-15.7: All if ... else if
constructs shall be terminated
with an else statement

Required Decidable MISRA2012-RULE-15_7: All ‘if ... else if’ constructs shall be
terminated with an ‘else’ statement

© 2017 Parasoft Corporation

19

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-16.1: All switch statements
shall be well-formed

Required Decidable MISRA2012-RULE-16_1_a: A switch statement shall only
contain switch labels and switch clauses, and no other
code
MISRA2012-RULE-16_1_b: A switch label shall only
be used when the most closely-enclosing compound
statement is the body of a switch statement
MISRA2012-RULE-16_1_c: An unconditional break
statement shall terminate every non-empty case clause
MISRA2012-RULE-16_1_d: An unconditional break
statement shall terminate every non-empty default clause
MISRA2012-RULE-16_1_e: Always provide a default
branch for switch statements
MISRA2012-RULE-16_1_f: A ‘default’ label shall have
a statement or a comment before terminating ‘break’
MISRA2012-RULE-16_1_g: A ‘default’ label, if it exists,
shall appear as either the first or the last switch label of
a switch statement
MISRA2012-RULE-16_1_h: Every switch statement shall
have at least two switch-clauses

Rule-16.2: A switch label shall
only be used when the most
closely-enclosing compound
statement is the body of a
switch statement

Required Decidable MISRA2012-RULE-16_2: A switch label shall only be used
when the most closely-enclosing compound statement is
the body of a switch statement

Rule-16.3: An unconditional
break statement shall terminate
every switch-clause

Required Decidable MISRA2012-RULE-16_3_a: An unconditional break
statement shall terminate every switch-clause
MISRA2012-RULE-16_3_b: An unconditional break
statement shall terminate every switch-clause

Rule-16.4: Every switch
statement shall have a default
label

Required Decidable MISRA2012-RULE-16_4_a: Every ‘switch’ statement shall
have a ‘default’ label
MISRA2012-RULE-16_4_b: A ‘default’ label shall have
a statement or a comment before terminating ‘break’

Rule-16.5: A default label shall
appear as either the first or the
last switch label of a switch
statement

Required Decidable MISRA2012-RULE-16_5: A default label shall appear as
either the first or the last switch label of a switch statement

Rule-16.6: Every switch
statement shall have at least
two switch-clauses

Required Decidable MISRA2012-RULE-16_6: Every switch statement shall
have at least two switch-clauses

© 2017 Parasoft Corporation

20

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-16.7: A switch-expression
shall not have essentially
Boolean type

Required Decidable MISRA2012-RULE-16_7_a: A switch-expression shall not
have essentially Boolean type
MISRA2012-RULE-16_7_b: A switch-expression shall not
have essentially Boolean type

Rule-17.1: The features of
<stdarg.h>
shall not be used

Required Decidable MISRA2012-RULE-17_1_a: The features of <stdarg.h> shall
not be used
MISRA2012-RULE-17_1_b: The features of <stdarg.h> shall
not be used

Rule-17.2: Functions shall not
call
themselves, either directly or
indirectly

Required Undecidable MISRA2012-RULE-17_2: Functions shall not call
themselves, either directly or indirectly

Rule-17.3: A function shall not
be declared implicitly

Mandatory Decidable MISRA2012-RULE-17_3: A function shall not be declared
implicitly

Rule-17.4: All exit paths from a
function with non-void return
type shall have an explicit
return statement with an
expression

Mandatory Decidable MISRA2012-RULE-17_4: All exit paths from a function with
non-void return type shall have an explicit return statement
with an expression

Rule-17.5: The function
argument corresponding
to a parameter declared to
have an array type shall have
an appropriate number of
elements

Advisory Undecidable MISRA2012-RULE-17_5: The function argument
corresponding to a parameter declared to have an array
type shall have an appropriate number of elements

Rule-17.6: The declaration of
an array parameter shall not
contain the static keyword
between the []

Mandatory Decidable MISRA2012-RULE-17_6: The declaration of an array
parameter shall not contain the ‘static’ keyword between
the []

Rule-17.7: The value returned
by a function having non-void
return type shall be used

Required Decidable MISRA2012-RULE-17_7_a: The value returned by a
function having non-void return type shall be used
MISRA2012-RULE-17_7_b: The value returned by a
function having non-void return type shall be used

Rule-17.8: A function parameter
should not be modified

Advisory Undecidable MISRA2012-RULE-17_8: A function parameter should not
be modified

© 2017 Parasoft Corporation

21

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-18.1: A pointer resulting
from arithmetic on a pointer
operand shall address an
element of the same array as
that pointer operand

Required Undecidable MISRA2012-RULE-18_1_a : Avoid accessing arrays out of
bounds
MISRA2012-RULE-18_1_b : Avoid accessing arrays and
pointers out of bounds
MISRA2012-RULE-18_1_c : A pointer operand, as well
as any pointer resulting from pointer arithmetic using that
operand, shall address elements of the same array

Rule-18.2: Subtraction between
pointers shall only be applied
to pointers that address
elements of the same array

Required Undecidable MISRA2012-RULE-18_2: Subtraction between pointers
shall only be applied to pointers that address elements of
the same array

Rule-18.3: The relational
operators >, >=, < and <= shall
not be applied to objects of
pointer type except where they
point into the same object

Required Undecidable MISRA2012-RULE-18_3: >, >=, <, <= shall not be applied
to objects of pointer type, except where they point to the
same array

Rule-18.4: The +, -, += and
-= operators should not be
applied to an expression of
pointer type

Advisory Decidable MISRA2012-RULE-18_4: The +, -, += and -= operators
should not be applied to an expression of pointer type

Rule-18.5: Declarations should
contain no more than two
levels of pointer nesting

Advisory Decidable MISRA2012-RULE-18_5: Declarations should contain no
more than two levels of pointer nesting

Rule-18.6: The address of an
object with automatic storage
shall not be copied to another
object that persists after the
first object has ceased to exist

Required Undecidable MISRA2012-RULE-18_6_a: The address of an object with
automatic storage shall not be returned from a function
MISRA2012-RULE-18_6_b: The address of an object with
automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist

Rule-18.7: Flexible array
members shall not be declared

Required Decidable MISRA2012-RULE-18_7: Flexible array members shall not
be declared

Rule-18.8: Variable length array
types shall not be used

Required Decidable MISRA2012-RULE-18_8: Variable-length array types shall
not be used

Rule-19.1: An object shall not
be assigned or copied to an
overlapping object

Mandatory Undecidable MISRA2012-RULE-19_1_a: An object shall not be assigned
or copied to an overlapping object
MISRA2012-RULE-19_1_b: An object shall not be
assigned or copied to an overlapping object

Rule-19.2: The union keyword
should not be used

Advisory Decidable MISRA2012-RULE-19_2: The union keyword should not
be used

© 2017 Parasoft Corporation

22

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-20.1: #include directives
should only be preceded by
preprocessor directives or
comments

Advisory Decidable MISRA2012-RULE-20_1: #include directives should only
be preceded by preprocessor directives or comments

Rule-20.2: The ’,’ or \ characters
and the /* or // character
sequences shall not occur in
a header file name

Required Decidable MISRA2012-RULE-20_2_a: The ‘, & or \ characters and
the /* or // character sequences shall not occur in a header
file name
MISRA2012-RULE-20_2_b: The ‘, & or \ characters and
the /* or // character sequences shall not occur in a header
file name

Rule-20.3: The #include
directive shall be followed
by either a <file- name> or
“filename” sequence

Required Decidable MISRA2012-RULE-20_3: The #include directive shall be
followed by either a <filename> or “filename” sequence

Rule-20.4: A macro shall not be
defined with the same name as
a keyword

Required Decidable MISRA2012-RULE-20_4_a: A macro shall not be defined
with the same name as a keyword
MISRA2012-RULE-20_4_b: A macro shall not be defined
with the same name as a keyword

Rule-20.5: #undef should not
be used

Advisory Decidable MISRA2012-RULE-20_5: #undef should not be used

Rule-20.6: Tokens that look
like a preprocessing directive
shall not occur within a macro
argument

Required Decidable MISRA2012-RULE-20_6: Tokens that look like a
preprocessing directive shall not occur within a macro
argument

Rule-20.7: Expressions
resulting from the expansion
of macro parameters shall be
enclosed in parentheses

Required Decidable MISRA2012-RULE-20_7: Expressions resulting from the
expansion of macro parameters shall be enclosed in
parentheses

Rule-20.8: The controlling
expression of a #if or #elif
preprocessing directive shall
evaluate to 0 or 1

Required Decidable MISRA2012-RULE-20_8: The controlling expression of a
#if or #elif preprocessing directive shall evaluate to 0 or 1

Rule-20.9: All identifiers used
in the controlling expression
of #if or #elif preprocessing
directives shall be #define’d
before evaluation

Required Decidable MISRA2012-RULE-20_9_a: All identifiers used in the
controlling expression of #if or #elif preprocessing
directives shall be #define’d before evaluation
MISRA2012-RULE-20_9_b: All identifiers used in the
controlling expression of #if or #elif preprocessing
directives shall be #define’d before evaluation

© 2017 Parasoft Corporation

23

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-20.10: The # and ##
preprocessor operators should
not be used

Advisory Decidable MISRA2012-RULE-20_10: The # and ## preprocessor
operators should not be used

Rule-20.11: A macro parameter
immediately following a #
operator shall not immediately
be followed by a ## operator

Required Decidable MISRA2012-RULE-20_11: A macro parameter immediately
following a # operator shall not immediately be followed
by a ## operator

Rule-20.12: A macro parameter
used as an operand to the
or ## opera- tors, which is
itself subject to further macro
replacement, shall only be
used as an operand to these
operators

Required Decidable MISRA2012-RULE-20_12: A macro parameter used as an
operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an
operand to these operators

Rule-20.13: A line whose first
 token is # shall be a valid
preprocessing
 directive

Required Decidable MISRA2012-RULE-20_13: A line whose first token is #
shall be a valid preprocessing directive

Rule-20.14: All #else, #elif and
#endif preprocessor directives
shall reside in the same file
as the #if, #ifdef or#ifndef
directive to which they are
related

Required Decidable MISRA2012-RULE-20_14: All #else, #elif and #endif
preprocessor directives shall reside in the same file as the
#if, #ifdef or #ifndef directive to which they are related

Rule-21.1: #define and #undef
shall not be used on a reserved
identifier or reserved macro
name

Required Decidable MISRA2012-RULE-21_1_a: Do not #define or #undef
identifiers with names which start with underscore
MISRA2012-RULE-21_1_b: #define and #undef shall not
be used on a reserved identifier or reserved macro name
(for C90 code)
MISRA2012-RULE-21_1_c: #define and #undef shall not
be used on a reserved identifier or reserved macro name
(for C99 code)
MISRA2012-RULE-21_1_d: Do not #define nor #undef
identifier ‘defined’

Rule-21.2: A reserved identifier
or macro name shall not be
declared

Required Decidable MISRA2012-RULE-21_2_a: An identifier with name which
starts with underscore shall not be declared
MISRA2012-RULE-21_2_b: A reserved identifier or macro
name shall not be declared (for C90 code)
MISRA2012-RULE-21_2_c: A reserved identifier or macro
name shall not be declared (for C99 code)

© 2017 Parasoft Corporation

24

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-21.3: The memory
allocation and deallocation
functions of <stdlib.h> shall not
be used

Required Decidable MISRA2012-RULE-21_3: The memory allocation and
deallocation functions of <stdlib.h> shall not be used

Rule-21.4: The standard header
file <setjmp.h> shall not be
used

Required Decidable MISRA2012-RULE-21_4_a: The standard header file
<setjmp.h> shall not be used
MISRA2012-RULE-21_4_b: The standard header file
<setjmp.h> shall not be used

Rule-21.5: The standard header
file <signal.h> shall not be used

Required Decidable MISRA2012-RULE-21_5_a: The standard header file
<signal.h> shall not be used
MISRA2012-RULE-21_5_b: The standard header file
<signal.h> shall not be used

Rule-21.6: The Standard Library
input/output functions shall not
be used

Required Decidable MISRA2012-RULE-21_6: The Standard Library input/
output functions shall not be used

Rule-21.7: The atof, atoi, atol
and atoll functions of <stdlib.h>
shall not be used

Required Decidable MISRA2012-RULE-21_7: The atof, atoi, atol and atoll
functions of <stdlib.h> shall not be used

Rule-21.8: The library functions
abort, exit, getenv and system
of <stdlib.h> shall not be used

Required Decidable MISRA2012-RULE-21_8: The library functions abort, exit,
getenv and system of <stdlib.h> shall not be used

Rule-21.9: The library functions
bsearch and qsort of <stdlib.h>
shall not be used

Required Decidable MISRA2012-RULE-21_9: The library functions bsearch and
qsort of <stdlib.h> shall not be used

Rule-21.10: The Standard
Library time and date functions
shall not be used

Required Decidable MISRA2012-RULE-21_10: The Standard Library time and
date functions shall not be used

Rule-21.11: The standard
header file <tgmath.h> shall not
be used

Required Decidable MISRA2012-RULE-21_11: The standard header file
<tgmath.h> shall not be used

Rule-21.12: The exception
handling features of <fenv.h>
should not be used

Advisory Decidable MISRA2012-RULE-21_12: The exception handling features
of <fenv.h> should not be used

Rule-22.1: All resources
obtained dynamically by means
of Standard Library functions
shall be explicitly released

Required Undecidable MISRA2012-RULE-22_1 : All resources obtained
dynamically by means of Standard Library functions shall
be explicitly released

© 2017 Parasoft Corporation

25

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-22.2: A block of memory
shall only be freed if it was
allocated by means of a
Standard Library function

Mandatory Undecidable MISRA2012-RULE-22_2_a : Do not use resources that
have been freed
MISRA2012-RULE-22_2_b : Do not free resources using
invalid pointers

Rule-22.3: The same file shall
not be open for read and write
access at the same time on
different streams

Required Undecidable MISRA2012-RULE-22_3 : The same file shall not be
opened for read and write access at the same time on
different stream

Rule-22.4: There shall be no
attempt to write to a stream
which has been opened as
read-only

Mandatory Undecidable MISRA2012-RULE-22_4 : Avoid writing to a stream which
has been opened as read only

Rule-22.5: A pointer to a
FILE object shall not be
dereferenced

Mandatory Undecidable MISRA2012-RULE-22_5_a: A pointer to a FILE object shall
not be dereferenced
MISRA2012-RULE-22_5_b: A pointer to a FILE object shall
not be dereferenced by a library function

Rule-22.6: The value of a
pointer to a FILE shall not
be used after the associated
stream has been closed

Mandatory Undecidable MISRA2012-RULE-22_6 : The value of a pointer to a FILE
shall not be used after the associated stream has been
closed

© 2017 Parasoft Corporation

26

MISRA C:2012 Amendment 1 Additional security guidelines for MISRA C:2012

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Dir-4.14: The validity of values received
from external sources shall be checked

Required — MISRA2012-DIR-4_14_a : Avoid tainted data in
array indexes
MISRA2012-DIR-4_14_b : Protect against integer
overflow/underflow from tainted data
MISRA2012-DIR-4_14_c : Avoid buffer read
overflow from tainted data
MISRA2012-DIR-4_14_d : Avoid buffer write
overflow from tainted data
MISRA2012-DIR-4_14_e : Protect against
command injection
MISRA2012-DIR-4_14_f : Protect against file
name injection
MISRA2012-DIR-4_14_g : Protect against SQL
injection
MISRA2012-DIR-4_14_h : Prevent buffer
overflows from tainted data
MISRA2012-DIR-4_14_i : Avoid buffer overflow
from tainted data due to defining incorrect format
limits
MISRA2012-DIR-4_14_j : Protect against
environment injection
MISRA2012-DIR-4_14_k : Avoid printing tainted
data on the output console

Rule-12.5: The sizeof operator shall not
have an operand which is a function
parameter declared as “array of type”

Mandatory Decidable MISRA2012-RULE-12_5: The ‘sizeof’ operator
shall not have an operand which is a function
parameter declared as “array of type”

Rule-21.13: Any value passed to
a function in <ctype.h> shall be
representable as an unsigned char or be
the value EOF

Mandatory Undecidable MISRA2012-RULE-21_13 : Any value passed to a
function in <ctype.h> shall be representable as an
‘unsigned char’ or be the value ‘EOF’

Rule-21.14: The Standard Library function
memcmp shall not be used to compare
null terminated strings

Required Undecidable MISRA2012-RULE-21_14 : The Standard Library
function ‘memcmp’ shall not be used to compare
null-terminated strings

Rule-21.15: The pointer arguments to
the Standard Library functions memcpy,
memmove and memcmp shall be
pointers to quali=ed or unquali=ed
versions of compatible types

Required Decidable MISRA2012-RULE-21_15: The pointer arguments
to the Standard Library functions ‘memcmp’,
‘memmove’ and ‘memcmp’ shall be pointers to
qualified or unqualified versions of compatible
types

Rule-21.16: The pointer arguments to
the Standard Library function memcmp
shall point to either a pointer type, an
essentially signed type, an essentially
unsigned type, an essentially Boolean
type or an essentially enum type

Required Decidable MISRA2012-RULE-21_16: The pointer arguments
to the Standard Library function ‘memcmp’ shall
point to either a pointer type, an essentially
signed type, an essentially unsigned type, an
essentially Boolean type or an essentially enum
type

Parasoft helps organizations perfect today’s highly-connected applications by automating time-

consuming testing tasks and providing management with intelligent analytics necessary to focus

on what matters. Parasoft’s technologies reduce the time, effort, and cost of delivering secure,

reliable, and compliant software, by integrating static and runtime analysis; unit, functional,

and API testing; and service virtualization. With developer testing tools, manager reporting/

analytics, and executive dashboarding, Parasoft supports software organizations with the

innovative tools they need to successfully develop and deploy applications in the embedded,

enterprise, and IoT markets, all while enabling today’s most strategic development initiatives

— agile, continuous testing, DevOps, and security.

ABOUT PARASOFT

Copyright 2017. All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or reg-
istered trademarks of Parasoft Corporation. All other products, services, and companies are trademarks, registered
trademarks, or servicemarks of their respective holders in the US and/or other countries.

www.parasoft.com

Parasoft Headquarters:
+1-626-256-3680

Parasoft EMEA:
+31-70-3922000

Parasoft APAC:
+65-6338-3628

27

MISRA ID and
Description

Classification Decidability
Parasoft ID and

Description

Rule-21.17: Use of the string handling
functions from <string.h> shall not result
in accesses beyond the bounds of the
objects referenced by their pointer
parameters

Mandatory Undecidable MISRA2012-RULE-21_17_a : Avoid overflow due
to reading a not zero terminated string
MISRA2012-RULE-21_17_b : Avoid overflow
when writing to a buffer

Rule-21.18: The size_t argument passed
to any function in <string.h> shall have
an appropriate value

Mandatory Undecidable MISRA2012-RULE-21_18 : The ‘size_t’ argument
passed to any function in <string.h> shall have an
appropriate value

Rule-21.19: The pointers returned by the
Standard Library functions localeconv,
getenv, setlocale or, strerror shall only be
used as if they have pointer to const-
quali=ed type

Mandatory Undecidable MISRA2012-RULE-21_19_a: The pointers
returned by the Standard Library functions
‘localeconv’, ‘getenv’, ‘setlocale’ or, ‘strerror’ shall
only be used as if they have pointer to const-
qualified type
MISRA2012-RULE-21_19_b: Strings pointed by
members of the structure ‘lconv’ should not be
modified

Rule-21.20: The pointer returned by
the Standard Library functions asctime,
ctime, gmtime, localtime, localeconv,
getenv, setlocale or strerror shall not be
used following a subsequent call to the
same function

Mandatory Undecidable MISRA2012-RULE-21_20 : Pointers returned by
certain Standard Library functions should not be
used following
a subsequent call to the same or related function

Rule-22.7: The macro EOF shall only be
compared with the unmodified return
value from any Standard Library function
capable of returning EOF

Required Undecidable MISRA2012-RULE-22_7 : The value of a pointer
to a FILE shall not be used after the associated
stream has been closed

Rule-22.8: The value of errno shall
be set to zero prior to a call to an
errnosetting-function

Required Undecidable MISRA2012-RULE-22_8 : The value of ‘errno’
shall be set to zero prior to a call to an errno-
setting-function

Rule-22.9: The value of errno shall
be tested against zero after calling an
errnosetting-function

Required Undecidable MISRA2012-RULE-22_9 : The value of ‘errno’
shall be tested against zero after calling an errno-
setting-function

Rule-22.10: The value of errno shall only
be tested when the last function to be
called was an errno-setting-function

Required Undecidable MISRA2012-RULE-22_10 : The value of ‘errno’
shall only be tested when the last function to be
called was an errno-setting-function

 – Denotes Flow Analysis rules. Flow Analysis rules require dedicated license feature.

